243 research outputs found

    Use of Gas Electron Multiplier (GEM) Detectors for an Advanced X-ray Monitor

    Get PDF
    We describe a concept for a NASA SMEX Mission in which Gas Electron Multiplier (GEM) detectors, developed at CERN, are adapted for use in X-ray astronomy. These detectors can be used to obtain moderately large detector area and two-dimensional photon positions with sub mm accuracy in the range of 1.5 to 15 keV. We describe an application of GEMs with xenon gas, coded mask cameras, and simple circuits for measuring event positions and for anticoincidence rejection of particle events. The cameras are arranged to cover most of the celestial sphere, providing high sensitivity and throughput for a wide variety of cosmic explosions. At longer timescales, persistent X-ray sources would be monitored with unprecedented levels of coverage. The sensitivity to faint X-ray sources on a one-day timescale would be improved by a factor of 6 over the capability of the RXTE All Sky Monitor.Comment: 10 pages, 5 figs., in X-Ray and Gamma Ray Instrumentation for Astronomy XI, SPIE conference, San Diego, Aug. 200

    Search for the ac Josephson effect in superfluid 3He

    Get PDF
    Experiments testing for the existence of the ac Josephson effect in superfluid 3He, analogous to phenomena observed in superconducting microbridges, have been performed. Small holes were employed as the weak link between two reservoirs filled with 3He; several different orifice geometries were tried. Simple model calculations suggest that steps in the flow characteristics should be observable with our resolution when an ac pressure modulation is applied across the weak link. We found that such effects do not exist for the parameter values used in our experiments.Peer reviewe

    Ekternalitas PT. AMP Plantation terhadap masyarakat Nagari Bawan Kecamatan Ampek Nagari Kabupaten Agam

    Get PDF
    PT. AMP Plantation merupakan perusahaan yang bergerak dibidang produksi minyak goreng bersumber dari kelapa sawit berdiri ditahun 1994. Tujuan dari penelitian ini untuk mengidentifikasi eksternalitas setelah adanya Perusahaan tersebut. Jenis penelitian ini dengan data primer yang dikumpulkan dengan dokumentasi dan wawancara pada seratus responden. Metode yang digunakan dalam penelitian ini metode cross tab. Hasil penelitian ini menunjukkan bahwa terdapat eksternalitas terhadap pendapatan, eksternalitas terhadap kesehatan, eksternalitas terhadap pendidikan, eksternalitas terhadap sarana. Kata kunci: ekstrenalitas, pendapatan, kesehatan, pendidikan, saran

    Basin-scale spatio-temporal variability and control of phytoplankton photosynthesis in the Baltic Sea: The first multiwavelength fast repetition rate fluorescence study operated on a ship-of-opportunity

    Get PDF
    This study presents the results of the first field application of a flow-through multi-wavelength Fast Repetition Rate fluorometer (FRRF) equipped with two excitation channels (458 and 593 nm). This device aims to improve the measurement of mixed cyanobacteria and algae community's photosynthetic parameters and was designed to be easily incorporated into existing ferrybox systems. We present a spatiotemporal analysis of the maximum photochemical efficiency (Fv/Fm) and functional absorption cross section (σPSII) recorded from April to August 2014 on a ship-of-opportunity commuting twice per week between Helsinki (Finland) and TravemĂŒnde (Germany). Temporal variations of Fv/Fm and σPSII differed between areas of the Baltic Sea. However, even though the Baltic Sea is characterized by several physico-chemical gradients, no gradient was observed in Fv/Fm and σPSII spatial distribution suggesting complex interactions between biotic and abiotic controls. σPSII was sensitive to phytoplankton seasonal succession and thus differed according to the wavelength used to excite photosystems II (PSII) pigments. This was particularly true in summer when high σPSII(593) values were observed later and longer than high σPSII(458) values, reflecting the role of cyanobacteria in photosynthetic light uptake measured at community scale. In contrast, Fv/Fm variations were similar after excitation at 458 nm or 593 nm suggesting that the adjustment of Fv/Fm in response to environmental factors was similar for the different groups (algae vs. cyanobacteria) present within the phytoplankton community

    Signal Space Separation Beamformer

    Get PDF
    We have combined Signal Space Separation and beamformers (SSS beamformer). The SSS beamformer was tested by simulation in the presence of simulated brain noise. The SSS beamformer performs at least as well as the conventional beamformer, provided that the expansion order is sufficiently high. For beamformer outputs which depend on power or power difference normalized by the projected noise, the spatial resolution of the SSS beamformer is significantly better than that of the conventional beamformers if the sources are deeper, and about the same as that of the conventional beamformer when the sources are superficial. For beamformer outputs which depend on the ratio of powers, the spatial resolutions of the SSS and conventional beamfomers are the same. The sensor noise covariance matrix in the SSS basis is non-diagonal. The SSS beamformers with diagonalized noise covariance matrix exhibit better spatial resolution than that with non-diagonal noise covariance matrix. The SSS beamformers are computationally more efficient than the conventional beamformers

    Search for the ac Josephson effect in superfluid He3

    Get PDF
    Experiments testing for the existence of the ac Josephson effect in superfluid He3, analogous to phenomena observed in superconducting microbridges, have been performed. Small holes were employed as the weak link between two reservoirs filled with He3; several different orifice geometries were tried. Simple model calculations suggest that steps in the flow characteristics should be observable with our resolution when an ac pressure modulation is applied across the weak link. We found that such effects do not exist for the parameter values used in our experiments. © 1983 The American Physical Society

    Comparison of beamformer implementations for MEG source localization

    Get PDF
    Beamformers are applied for estimating spatiotemporal characteristics of neuronal sources underlying measured MEG/EEG signals. Several MEG analysis toolboxes include an implementation of a linearly constrained minimum-variance (LCMV) beamformer. However, differences in implementations and in their results complicate the selection and application of beamformers and may hinder their wider adoption in research and clinical use. Additionally, combinations of different MEG sensor types (such as magnetometers and planar gradiometers) and application of preprocessing methods for interference suppression, such as signal space separation (SSS), can affect the results in different ways for different implementations. So far, a systematic evaluation of the different implementations has not been performed. Here, we compared the localization performance of the LCMV beamformer pipelines in four widely used open-source toolboxes (MNE-Python, FieldTrip, DAiSS (SPM12), and Brainstorm) using datasets both with and without SSS interference suppression. We analyzed MEG data that were i) simulated, ii) recorded from a static and moving phantom, and iii) recorded from a healthy volunteer receiving auditory, visual, and somatosensory stimulation. We also investigated the effects of SSS and the combination of the magnetometer and gradiometer signals. We quantified how localization error and point-spread volume vary with the signal-to-noise ratio (SNR) in all four toolboxes. When applied carefully to MEG data with a typical SNR (3-15 dB), all four toolboxes localized the sources reliably; however, they differed in their sensitivity to preprocessing parameters. As expected, localizations were highly unreliable at very low SNR, but we found high localization error also at very high SNRs for the first three toolboxes while Brainstorm showed greater robustness but with lower spatial resolution. We also found that the SNR improvement offered by SSS led to more accurate localization.Peer reviewe

    Fabrication of a thin silicon detector with excellent thickness uniformity

    Get PDF
    We have fabricated and tested a thin silicon detector with the specific goal of having a very good thickness uniformity. SOI technology was used in the detector fabrication. The detector was designed to be used as a Delta E detector in a silicon telescope for measuring solar energetic particles in space. The detector thickness was specified to be 20 mu m with an rms thickness uniformity of +/- 0.5%. The active area consists of three separate elements, a round centre area and two surrounding annular segments. A new method was developed for measuring the thickness uniformity based on a modified Fizeau interferometer. The thickness uniformity specification was well met with the measured rms thickness variation of 43 nm. The detector was electrically characterized by measuring the I-V and C-V curves and the performance was verified using a Am-241 alpha source. (C) 2015 Elsevier B.V. All rights reserved.</p

    Solar Intensity X-Ray and Particle Spectrometer SIXS : Instrument Design and First Results

    Get PDF
    The Solar Intensity X-ray and particle Spectrometer (SIXS) on the BepiColombo Mercury Planetary Orbiter ("Bepi") measures the direct solar X-rays, energetic protons, and electrons that bombard, and interact with, the Hermean surface. The interactions result in X-ray fluorescence and scattering, and particle induced X-ray emission (PIXE), i.e. "glow" of the surface in X-rays. Simultaneous monitoring of the incident and emitted radiation enables derivation of the abundances of some chemical elements and scattering properties of the outermost surface layer of the planet, and it may reveal other sources of X-ray emission, due to, for example, weak aurora-like phenomena in Mercury's exosphere. Mapping of the Hermean X-ray emission is the main task of the MIXS instrument onboard BepiColombo. SIXS data will also be used for investigations of the solar X-ray corona and solar energetic particles (SEP), both in the cruise phase and the passes of the Earth, Venus and Mercury before the arrival at Mercury's orbit, and the final science phase at Mercury's orbit. These observations provide the first-ever opportunity for in-situ measurements of the propagation of SEPs, their interactions with the interplanetary magnetic field, and space weather phenomena in multiple locations throughout the inner solar system far away from the Earth, and more extensively at Mercury's orbit. In this paper we describe the scientific objectives, design and calibrations, operational principles, and scientific performance of the final SIXS instrument launched to the mission to planet Mercury onboard BepiColombo. We also provide the first analysis results of science observations with SIXS, that were made during the Near-Earth Commissioning Phase and early cruise phase operations in 2018-19, including the background X-ray sky observations and "first light" observations of the Sun with the SIXS X-ray detection system (SIXS-X), and in-situ energetic electron and proton observations with the SIXS Particle detection system (SIXS-P).Peer reviewe
    • 

    corecore